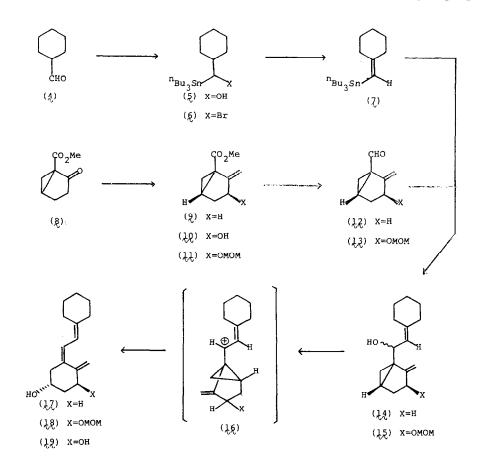

SYNTHETIC STUDIES TOWARD TO 1α -HYDROXYVITAMIN D₃ ----- STEREOSELECTIVE SYNTHESIS OF $(\pm) - (z) - 2 - (3\beta, 5\alpha - DIHYDROXY - 2 - METHYLENECYCLOHEXYLIDENE) ETHYLIDENECYCLOHEXANE$

Hideo Nemoto, Xiao-Ming Wu, Hiroshi Kurobe, Masataka Ihara, Keiichiro Fukumoto Pharmaceutical Institute, Tohoku University, Aobayama, Sendai 980, Japan Tetsuji Kametani Institute of Medicinal Chemistry, Hoshi University, Ebara 2-4-41, Shinagawa-ku,

Tokyo 142, Japan


Summary: As a model experiment for a synthesis of 1α -hydroxyvitamin D₃, the title compound $(\frac{19}{100})$ was stereoselectively synthesized <u>via</u> the solvolysis of $(\frac{1}{2})$ -2-hydroxy-2-[(38-methoxymethoxy-2-methylenebicyclo[3.1. 0]hexane)-1]ethylidenecyclohexane ($\frac{15}{100}$).

In the course of our synthetic study of vitamin D^1 , we attentioned the Mazur's report, the conversion of vitamin D_3 (1) to 3,5-cyclovitamin D_3 (2) and their stereoselective reconversion to the starting vitamin D_3^2 . On the basis of this observation, a stereocontrolled total synthesis of la-hydroxyvitamin D_3 (3), the highly biological active analog of cholecalciferol, has been planned <u>via</u> the 3,5-cyclo compound. Here we wish to describe a stereoselective synthesis of (\pm)-(Z)-2-(3 β ,5 α -dihydroxy-2-methylenecyclohexylidene)ethylidenecyclohexane (19) according to this strategy as a model experiment.

Synthesis of bicyclo[3.1.0]hexyl alcohol (15) was achieved by the coupling reaction between the aldehyde $(\frac{1}{1,3})$ having the requisite functionalities of the ring A and the vinyl anion derived from the organostannane (7) according to the Still's method³. Thus, treatment of cyclohexanecarboxaldehyde (4) with tributylstannyllithium, prepared by reaction of tributylstannyl chloride and lithium in tetrahydrofuran, at -78° C for 5 min gave the stannylcarbinol (5), which was converted, without purification, into the bromide (β) on the reaction with triphenylphosphine and carbon tetrabromide in methylene chloride at room temperature for 2 h 4,5. Dehydrobromination of 6 with 1,5-diazabicyclo[5.4.0]undecene-5 in a mixture of dimethylformamide and toluene under reflux for 2 h afforded, in 64 % yield, the olefin (7), ¹H-NMR (CDCl₂) δ 5.24 (1H, d, J = 4 Hz). The coupling reaction was firstly examined using 2-methylenebicyclo[3.1.0]hexane-1carboxaldehyde (12), which was prepared from methyl 2-oxo-bicyclo[3.1.0]hexane-1-carboxylate (8)⁶ in three steps; Wittig reaction using triphenylmethylphosphonium bromide and n-butyllithium in tetrahydrofuran (47 %), reduction with lithium aluminum hydride and oxidation with pyridinium chlorochromate (PCC) in dichloromethane [85 % from the exomethylene compound (9)]. Coupling proceeded via lithiation of 7 with n-butyllithium³ in tetrahydrofuran at -20°C for 2 h, followed by addition of the aldehyde $(\frac{12}{3.2})$ at -78°C. After stirring for 30 min at -78°C, the product $(\frac{14}{2})$, m/e 218 (M⁺), was isolated in 76.1 % yield by column chromatography on silica gel. The product was homogeneous on TLC and the ratio of two epimers could not be established by $^{1} extsf{H-NMR}$ spectroscopy utilizing shift reagents⁷. Solvolysis was conducted by heating 14 in the presence of catalytic amount of p-toluenesulfonic acid in aqueous dioxane at 55°C for 10 min to give the Z-triene (17) in 66.3 % yield. No formation of E-isomer was observ-The UV spectrum, (MeOH) 260 nm (ε 10,500), of $\frac{17}{12}$, m/e 218 (M⁺), indicated ed. the Z-configuration and the ¹H-NMR spectrum showed the following signals, (CDCl₃) δ 3.89 (1H, m), 4.82 (1H, m, $\Delta Wh/2 = 4 Hz$), 5.05 (1H, d, <u>J</u> = 3 Hz), 6.12 (2H, s), which were consistent with the reported ones⁸.

The aldehyde possessing a protecting hydroxyl group at C₃ position was obtained via the allylic oxidation of 2 with selenium dioxide and <u>t</u>-butyl hydroperoxide^{9,10} in methylene chloride. The β -hydroxylated compound ($\frac{10}{12}$) was predominantly formed over the α -hydroxy isomer. The oxidation of the α -hydroxy compound to the corresponding ketone was faster than that of the former $(\frac{1}{10})^{10}$. Therefore the oxidation for 3 h at room temperature followed by purification of the products by column chromatography gave $\frac{1}{10}$ in 41.3 % yield and the ketone in 33.6 % yield. The hydroxyl group was protected as methoxymethyl (MOM) ether $(\frac{1}{11})$ (96 %) by the action of methoxymethyl chloride in the presence of diisopropylethylamine. The ester $(\frac{1}{11})$ was transformed, by lithium aluminum hydride reduction (83.4 %) and PCC oxidation (71 %), into the aldehyde $(\frac{1}{13})$. Coupling reaction under the same reaction conditions as above gave, in 76.8 % yield, the epimeric alcohols $(\frac{1}{15})$, m/e 278 (M⁺); NMR (CDCl₃) δ 0.56 (1H, t, $\underline{J} = 4$ Hz), 3.38 (3H, s), 4.14 (1H, m), 4.68 (2H, s), 4.84 (2H, m), 5.18 (2H, m), which were inseparable. Solvolysis of $\frac{1}{15}$ as above gave the desired Z-triene $(\frac{1}{18})$, in 65.3 % yield, m/e 278 (M⁺); UV (Et₂O) 265 nm (ε 13,200);¹H-NMR (CDCl₃) δ 3.36 (3H, s), 4.16 (1H, m), 4.28 (1H, m), 4.58 (2H, m), 5.20 (2H, m), 6.04 and 6.30 (each 1H, each d, $\underline{J} = 12$ Hz), as a sole product. Deprotection of the MOM group by heating

4260

18 in the presence of small amount of conc. hydrochloric acid in methanol at 60°C for 1.5 h produced in 69.5 % yield, the diol (19), mp 118 - 119°C, m/e 234 (M⁺); UV (Et₂O) 261 nm (ϵ 18,400); ¹H-NMR (CDCl₃) & 4.20 (1H, m), 4.41 (1H, m), 5.00 (1H, br s), 5.31 (1H, br s), 6.16 and 6.32 (each 1H, each d, <u>J</u> = 12 Hz). Such high stereoselective formation of Z-trienes would be accounted by the solvolysis <u>via</u> the thermodynamically preferred carbonium ion intermediate (16). Thus the above synthetic strategy would provide an efficient synthetic route to 1α -hydroxyvitamin D₃.

References and Notes

- The previous synthetic study from these laboratories; H. Nemoto, K. Suzuki,
 M. Tsubuki, K. Minemura, K. Fukumoto, T. Kametani, H. Furuyama, <u>Tetrahedron</u>,
 39, 1123 (1983).
- 2) M. Sheves, Y. Mazur, J. Am. Chem. Soc., 27, 6249 (1975).
- 3) W. C. Still, J. Am. Chem. Soc., 100, 1481 (1978).
- 4) R. G. Weiss, E. I. Snyder, J. Org. Chem., 36, 403 (1971).
- 5) Y. Torisawa, M. Shibasaki, S. Ikegami, <u>Tetrahedron Lett.</u>, 22, 2397 (1981).
- 6) K. Kondo, E. Hiro, D. Tunemoto, Tetrahedron Lett., 4489 (1976).
- 7) M. Sheves, Y. Mazur, Tetrahedron Lett., 2987 (1976).
- J. V. Frosch, I. T. Harrison, B. Lythgoe, A. K. Saksena, <u>J. Chem. Soc.</u>, Perkin I, 2005 (1974).
- 9) D. Arigoni, A. Vasella, H. P. Jensen, K. B. Sharpless, <u>J. Am. Chem. Soc.</u>, 95, 7917 (1973).
- 10) H. E. Paaren, H. F. Dehuca, H. K. Schnoes, <u>J. Org. Chem.</u>, <u>45</u>, 3253 (1980). (Received in Japan 24 June 1983)